Supporting intercultural communication with visual information in virtual exchanges: when a picture paints a thousand words

Marta Fondo

Abstract

Virtual exchanges (VEs) based on synchronous video communication allow learners to benefit from online intercultural experiences with a high degree of interactivity (Wang, 2004). Video conferencing tools allow synchronous audio-visual and non-verbal communication as in Face-To-Face (FTF) situations (Kock, 2005), although synchronous video communication differs from FTF communication because participants are not in the same physical space during interactions. However, technological restrictions during interaction can be compensated by media users as they adapt their communication behaviour (Walsh, 2018). This is the case of the present study which analyses the use of the video camera by learners to support oral communication with the visual information present in their physical spaces. For this purpose, 50 video-recorded intercultural activities carried out by 30 pairs of undergraduate students in Spain, Ireland, Mexico, and the United States were analysed through observation techniques. Results show how Visual Supported Actions (VSAs) are a new digital non-verbal communication which supports intercultural communication in the Foreign Language (FL), blurring the contextual physical restrictions of video conferences. Moreover, the study shows that VSAs are a new way of online Self-Disclosure (SD), a process of communication through which one person reveals information about themselves to another (Sprecher et al., 2013).

How to cite: Fondo, M. (2021). Supporting intercultural communication with visual information in virtual exchanges: when a picture paints a thousand words. In M. Satar (Ed.), Virtual exchange: towards digital equity in internationalisation (pp. 73-81). Research-publishing.net. https://doi.org/10.14705/rpnet.2021.53.1291
Chapter 6

Keywords: virtual exchange, SCMC affordances, self-disclosure, multimodal communication.

1. Introduction

Audio and videoconferencing tools have rapidly evolved from expensive equipment to computer and mobile applications (Helm, 2015). Hence, online communication tools and applications are becoming increasingly available and varied (O’Dowd, Sauro, & Spector-Cohen, 2020). This has allowed the spread of synchronous video communication in VE projects offering a closer real-world communicative experience to learners. Among their positive contributions, VEs support internationalisation, the development of workplace skills, and provide student-centred instruction (Nafsa, 2020). VEs also benefit oral proficiency as they boost learners’ speaking skills and add a sense of purpose to collaborate with other learners (Canals, 2020). Furthermore, VEs increase the willingness to interact (Jauregi, De Graaff, van den Bergh, & Kriz, 2012), fostering intercultural communicative competence development (Jung et al., 2019). However, the effects of using videoconferencing systems to communicate in intercultural and multilingual settings remain mainly unexplored. As O’Dowd et al. (2020) state, “researchers should continue to examine the affordances and constraints of online tools” (p. 169). Hence, this study aims at exploring factors involved in the use of VSAs in VE settings and the power of image for intercultural communication.

2. Background

2.1. Videoconferencing and VEs: the effect of visual information in Synchronous Computer-mediated Communication (SCMC)

Video communication is perceived as more interactive and closer to in-person communication than other text-based or audio CMC (Liaw & Ware, 2018). As an example of affordances of the media, undergraduate students at Kern and
Develotte’s (2018) exchange between Berkeley and Lyon reported having felt online videoconferencing encounters as more real than FTF because the video interlocutor was really in France and the US.

Despite all the benefits of SCMC in VE, researchers have found that multimodal communication through videoconferencing tools implies higher cognitive efforts (Kock, 2005). In the case of learners communicating in the FL, SCMC is more demanding as they need to be competent in the FL as well as “become fluent in new codes such as online speech and writing and image” (Hampel & Hauck, 2006, p. 12). Yet in 2006, O’Dowd and Ritter pointed at the challenges VE can provoke if practitioners focus on students’ access to technology and not on their technological skills. In addition, problems in VEs can also arise due to language, cultural differences (Helm, 2015), and emotional factors (Fondo & Jacobetty, 2020) among students, as we will see in the following subsections.

2.2. Technological affordances and culture

Sauro and Chapelle (2017) pointed at the intersection between linguistic and cultural competences mediated by technology and used in the digital spaces and platforms where interaction between learners occurs, coining the term langua-technocultural competence. Taking into account that “affordances neither belong to the environment nor the individual, but rather to the relationship between individuals and their perceptions of environments” (Parchoma, 2014, p. 361), participants from different cultural groups could perceive the social interactive affordances provided by Information And Communication Technology (ICT) tools differently, affecting the way they use technology (Tu, 2000).

2.3. Technology and SD

Apparently, communication that has visual information (personal picture or video) in online chatting prevents the sense of anonymity so may increase inhibitions (see Nguyen, Bin, & Campbell, 2012 for a review). For instance, Brunet and Schmidt (2007) analysed conversations between unacquainted strangers. They reported that shyness was associated with the presence of
webcams during online interaction, resulting in lower levels of SD. Some students may feel challenged or uncomfortable when using video in SCMC. Thus, it is not the preferred means for initial contact in VEs (Liaw & Ware, 2018).

Nevertheless, there is evidence supporting the benefits of synchronous video communication. For instance, Palloff and Pratt (2007) discovered that although written communication fostered more elaborated messages, students were more likely to feel isolated. In addition, videoconferencing tools can support interaction if learners use the affordances provided by technology for meaning-making (Satar, 2016). Then technology will help to overcome the limitations resulting from the communication in an FL with distant peers (Thorne, Cornillie, & Piet, 2012).

3. Methodology

The sample of this study is composed of 30 pairs – 60 undergraduate students – from Spain, Ireland, Mexico, and the United States. Students were involved in an online intercultural project designed and implemented in the degree of business administration in 2018 at the Universitat Oberta de Catalunya (UOC) in Spain. Spanish speakers – students at UOC and the Benemérita Universidad Autónoma de Puebla – were paired with English speakers, students at University of Limerick (Ireland), and University of Minnesota (United States). During the project, participants had five video conferences in which they carried out five different task types (ice-breaking, spot the difference, decision-making, role-play, and opinion exchange). The videoconferencing sessions were bilingual (English and Spanish).

The project from which this study stems focused on the exploration of the emotional and intercultural dimensions in VEs (see Fondo & Jacobetty, 2020). During the analysis of the qualitative data of the project (observation, transcription, and codification of students’ video-recorded online sessions), a new way of communication between participants was identified. They were sharing personal information and self-disclosing through images using their
portable device (laptops, tablets, and phones) or webcams, what was coined as VSAs.

For this study, a total of 50 video-recorded interactions were analysed. Thirty of them correspond to 30 pairs carrying out the first task (ice-breaking) and 20 recordings correspond to five pairs (with different personality traits) performing the subsequent four task types explained above. The analysis was based on observation and transcription of the recordings following a content analysis procedure. The transcriptions captured actions and speech and were coded using Atlas.ti with an inductive approach in an iterative process. The main categories, subcategories, and codes were reviewed by the project’s expert in artificial intelligence (image and text labelling), Dr Mohammad Mahdi Dehshibi. The VSAs were finally coded under three main categories: type, mode, and subject, as explained in the following section.

To explore if the use of VSAs was related to students’ profiles or only to students’ use of devices, quantitative data gathered in the pre-project questionnaire (Fondo, Jacobetty, & Erdocia, 2018) was used to measure students’ levels of proficiency in the FL, SD, and FL anxiety although no connections between them were found.

4. **Results and discussion**

VSAs were found in 12 pairs out of 30, in which 14 students out of 60 used VSA to communicate with their partners. Among the 50 interactions analysed, 13 recordings had VSAs, 12 of them occurred during the first task (ice-breaking), and only one was found in subsequent tasks.

The first category, *Type* of VSA resulted in two subcategories: *voluntary*, the speaker shows on-screen or uses something already visible to support the conversation; and *non-voluntary* provoked by (1) a Question Trigger (QT) whereby the interlocutor uses their partner’s on-screen environment to ask for information or as a topic for conversation, or (2) an interruption when a person/
animal/object suddenly appears on the screen. The second category, *Mode*, differentiates between *fixed camera*, visible in the background, brought to or appearing at the camera’s framework, and *dynamic camera*, when the camera or device is moved to show a person/animal/object. Finally, the category *Subject* gathered the content of the VSAs and was divided into the subcategories *personal* and *other* (see Table 1).

Table 1. Main categories of VSA and recurrence of codes under each category

<table>
<thead>
<tr>
<th>VSA main categories</th>
<th>Voluntary N = 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Non-voluntary N = 8</td>
</tr>
<tr>
<td>Interruption</td>
<td>6</td>
</tr>
<tr>
<td>QT</td>
<td>2</td>
</tr>
<tr>
<td>Mode</td>
<td>Fix N = 20</td>
</tr>
<tr>
<td>Background</td>
<td>6</td>
</tr>
<tr>
<td>Brought</td>
<td>9</td>
</tr>
<tr>
<td>Appears</td>
<td>5</td>
</tr>
<tr>
<td>Dynamic N = 13</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Personal</td>
</tr>
<tr>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Regarding VSAs’ content, the most recurrent topics were family (n=11) and pets (n=7), followed by location (n=5), spare time (n=4), studies (n=3), and weather (n=3). The information shared through VSAs is more personal than expected for a first videoconference supporting the findings regarding the importance of SD to create bonds and liking (Sprecher et al., 2013). In this regard, Helm (2015) states that in VE “perhaps the greatest challenge on an interactional level though is getting students to engage in deeper levels of interaction” (p. 201). Hence, if VSAs contribute to help students feel more connected between them and confident in their communication, it could positively affect their motivation and minimise some of the common VE’s setbacks explained in the introduction and background sections.

At the same time, results in this study contradict the idea of visual information as an inhibitor of SD seen in Brunet and Schmidt (2007) and Nguyen et al. (2012). On
the contrary, VSAs seem to support intercultural communication in VEs, helping to share personal information and lessening communication barriers in the FL.

5. Conclusions

This study has highlighted the important role that ICT tools have in intercultural communication as a means to support conversation, as well as to share information in VEs. The affordances provided by videoconferencing tools have allowed a different way of non-verbal communication through moving images. Participants’ use of videoconferencing tools trespasses spatial limitations of framed video communication, allowing VSAs to support SD by solving communication breakdowns and language limitations during intercultural communication.

In this study, it was not possible to link students’ VSAs with their personality traits, culture, gender, or proficiency level obtained from the quantitative data gathered in the main project. Results, so far, seem to point at differences in students’ agency of tools for communication regardless of their profile. Thus, pedagogical mentoring – providing students with the necessary support and information to succeed in VEs – will be of help (O’Dowd et al., 2020) to assure that students can benefit from the use of VSAs for intercultural communication with people from different linguistic and cultural backgrounds. If students understand the benefits of using the video camera on their devices, it could encourage them to overcome shyness and other emotional barriers related to exposure in videoconferences. Moreover, sharing examples of other VE experiences can help to raise awareness among students to understand how culture, technology, and language can interact to shape meanings in online communicative contexts (Ware, 2013).

References

